	Inaugural Airport – Air	ble A-23 Cargo Concept Alternatives Methodology							
No.	Criteria	Methodology							
1	Ability to maximize airfield operational efficiency	This criterion estimated taxiing times based on the taxiing distances, runway crossings and taxiway crossings. Plan diagrams were prepared showing the taxiing route of the aircraft. Taxiing distances were calculated from the center of the cargo apron to both runway 09 and 27. Taxiing times were calculated for both east and west air traffic flow, assuming a taxiing speed of 15 mph, 3 minutes waiting time at runway crossings. The scores were weighted according to the estimated traffic flow configurations: 33% for the east and 67% for the west. (see "Facilities Requirement 3.1.6). These ratings were then combined into a final rating for each alternative. Alternatives with shorter taxiing time.							
2	Landside access	It is assumed that primary truck access to the airport will be via Interstate Highway I-57. Each concept alternative was evaluated to determine the access distance from I-57 to the air cargo facility.							
3	Compatibility with future airport plan.	Each concept alternative was evaluated to determine if it was in conflict with the intermediate and ultimate airport plans. If there was a significant conflict with the future plan the concept alternative was considered to not be compatible with the future airport plan.							
4	Ability to minimize adverse land use impacts and community disruption								
а	Avoid/minimize conflicts with the comprehensive land-use plans of the neighboring communities.	The Northeastern Illinois Planning Commission (NIPC) released the "Land Use Plan for the Eastern Will County Area" in August 1997, the most recently published land use plan for the area that specifically accounts for the airport. This document was used as the baseline to determine if conflicts with local plans would result from a concept alternative. Conflicts were defined as airport facilities being located outside of the previously defined airport boundary (as depicted on the land use map within the NIPC report), on land planned for other uses by the communities within the airport boundary as indicated in the NIPC report.							
b	Minimize population displacement	The number of residences that would be impacted by each concept alternative was determined through use of GIS. The GIS database established during the Phase 1 Engineering Study and updated for the Tier 1 EIS was used as a baseline. The number of existing residences was verified and modified from aerial photography of the site obtained by IDOT in 2002 and a windshield survey performed by TAMS in spring of 2004. Based on U.S.							

	Inaugural Airport – Air	ble A-23 Cargo Concept Alternatives Methodology
No.	Criteria	Methodology
с	Minimize local traffic disruption due to additional traffic being placed on local roads	The Average Daily Traffic volume that would be placed on local roadways was determined for each concept alternative. Each concept was evaluated based on the average daily volume of traffic that would be added to local roads. Concepts with a lower ADT volume were evaluated more favorably than concepts that would add a higher ADT volume to local roads.
5	Ability to minimize impacts on natural resources	
а	Wetlands	Potential wetland impacts were calculated based on a GIS analysis of a wetlands database for the site created during the Phase 1 Engineering Study. A wetland delineation of the site was conducted in 1996 (see "Wetland Delineation Report", TAMS Consultants, Inc., January 1996). A review of the wetland delineation was conducted in 2004 to determine potential changes to wetland boundaries that have occurred since the delineation. The GIS database has been updated to include those changes, which are being documented in a revised Wetland Delineation Report (in progress). It was assumed that any wetland or portion of wetland located within the AOA of each concept alternative would be potentially impacted. Updated wetland boundaries within the airport site are depicted on Exhibit A-4 (see Inaugural Airport Primary Runway (09-27) Concept Alternatives section).
b	Floodplains	Potential floodplain impacts were calculated based on a GIS analysis of Q3 digital flood data purchased from FEMA for Will County. It was assumed that any 100-year floodplain or portion of 100-year floodplain located within the AOA for each concept alternative would be potentially impacted. Existing floodplain boundaries within the airport site are depicted on Exhibit A-4 (see Inaugural Airport Primary Runway (09-27) Concept Alternatives section).
с	Water Resources	Potential impacts to water resources were calculated by determining the linear extent of existing stream channel that would be contained within the AOA for each concept alternative. Stream channels were identified from the GIS database established for this project, and are shown on Exhibits 3-1 through 3-9.
d	Prime Farmland	Potential impacts to prime farmland were calculated by determining the amount of prime farmland soils contained within the AOA of each concept alternative. A soil map of the entire site was digitized from the Will County Soil Survey and input into the project GIS. Prime and important farmland designation for each soil type was obtained from the U.S. Department of Agriculture. Figure 5.15-3 from the Tier 1 FEIS ¹ depicts the prime and important farmland soils database used for this analysis.

¹ Final Environmental Impact Statement, Tier 1: FAA Site Approval and Land Acquisition by the State of Illinois, Proposed South Suburban Airport, FAA, April 2002.

	Table A-23 Inaugural Airport – Air Cargo Concept Alternatives Evaluation Methodology										
No.	Criteria	Methodology									
6	Relative Cost Comparison	Relative costs were estimated based on earthwork, site preparation, access road length, creek crossings, taxiway length and environmental impact on wetlands, floodplains, and water resources. Ratings for each item were established separately, and then averaged together to obtain an overall rating for this criterion (see Table A-27).									

Source: TAMS, an Earth Tech Company, 2005.

	Inaugural Airport Air	ible A-24 Cargo Concep on Matrix Data				
No.	Criteria	C-1	C-2	C-3	C-4	C-5
1	Ability to maximize airfield operational efficiency Aircraft taxiing distance (feet)	Table A-26	Table A-26	Table A-26	Table A-26	Table A-26
2	Landside access Proximity to I-57 (miles)	6.7	2.9	5.8	7.8	6.5
3	Compatibility with future airport plan (refer to Table 9-3)	No - 1	Yes - 5	No - 1	No - 1	Yes - 5
4	Ability to minimize adverse land use impacts and community disruption					
а	Avoid/minimize conflicts with the comprehensive land-use plans of the neighboring communities	0 conflict	0 conflict	Oconflicts	0 conflicts	0 conflicts
b	Minimize population displacement (population impacted)	11 people	3 people	0 people	6 people	27 people
С	Minimize traffic disruption on local roads (average number of vehicles added on local roads daily)	188 ADT	0 ADT	188 ADT	188 ADT	188 ADT
5	Ability to minimize impacts on natural resources					
а	Wetlands (acres impacted)	0.71	1.04	0.51	0.88	1.52
b	Floodplains (acres impacted)	0	12.05	0	0	0
С	Water Resources (miles of stream impacted)	0	0.14	0	0	0
d	Prime Farmland (acres impacted)	15.77	41.37	25.2	25.76	26.34
6	Relative Cost Comparison	Table A - 28	Table A - 28	Table A - 28	Table A - 28	Table A - 28

Source: TAMS, an Earth Tech Company, 2005.

							Inau		ort – Air C		o lity Concept g Assignme		es							
	Crite	rion 1	Criter	ion 2	Criter	Criterion 3		Criterion 4a		Criterion 4b		ion 4c	Criter	ion 5a	Criter	ion 5b	Criterion 5c		Criterion 5d	
Alternative	Taxiing Time (minutes)		Landside Access Proximity to I-57		Compatibility with future airport plan		Compatibility with regional land use plans		Population Displacement		Traffic Disruption		Wetlands		Floodplains		Water resources (streams)		Prime Farmland	
	(min.)	Score	(miles)	Score	(conflicts)	Score	(conflicts)	Score	(people)	Score	Avg. Daily Trucks	Score	(acres)	Score	(acres)	Score	(people)	Score	(acres)	Score
C-1	13.4	5	6.7	2	1	1	0	5	11	3	188	1	0.71	4	0	5	0	5	15.77	5
C-2	19.2	1	2.9	5	0	5	0	5	3	5	0	5	1.04	3	12.05	1	0.14	1	41.37	1
C-3	14.6	4	5.8	3	1	1	0	5	0	5	188	1	0.51	5	0	5	0	5	25.20	4
C-4	17.1	2	7.8	1	0	1	0	5	6	4	188	1	0.88	4	0	5	0	5	25.76	4
C-5	14.8	4	6.5	2	0	5	0	5	27	1	188	1	1.52	1	0	5	0	5	26.24	3
Max Value	19.2		7.8		1		0		27		188		1.52		12.05		0.14		41.37	
Min Value	13.4		2.9		0		0		0		0		.51		0		0		15.77	
Range of Values	5.8		4.9		1		0		27		188		1.01		12.05		0.14		25.6	
20% of Range	1.2		0.98		0.2		0		5		37.6		0.20		2.41		0.03		5.12	
SCORE	Scoring	g Range	Scoring	Range	Scoring Range		Scoring Range		Scoring Range		Scoring Range		Scoring Range		Scoring Range		Scoring Range		Scoring	g Range
SCORE	Low	High	Low	High	Low	High	Low	High	Low	High	Low	Low	High	High	Low	High	Low	High	Low	High
1	18.1	19.2	6.9	7.8	0.8	1.0	0	0	21.6	27.0	150.4	188	1.32	1.52	9.64	12.05	0.11	0.14	36.25	41.37
2	16.9	18.09	5.9	6.8	0.6	0.79	0	0	16.2	21.3	112.8	150.4	1.12	1.31	7.23	9.52	0.08	0.11	31.13	35.99
3	15.7	16.89	4.9	5.8	0.4	0.59	0	0	10.8	15.9	75.2	112.8	0.91	1.11	4.82	7.11	0.06	0.08	26.01	30.87
4	14.6	15.69	3.9	4.8	0.2	0.39	0	0	5.4	10.5	37.6	75.2	0.71	0.90	2.41	4.70	0.03	0.05	20.89	25.75
5	13.4	14.59	2.9	3.8	0.0	0.19	0	0	0.0	5.1	0	37.6	0.51	0.70	0.0	2.29	0.00	0.03	15.77	20.63

Source: TAMS, an Earth Tech Company, 2005.

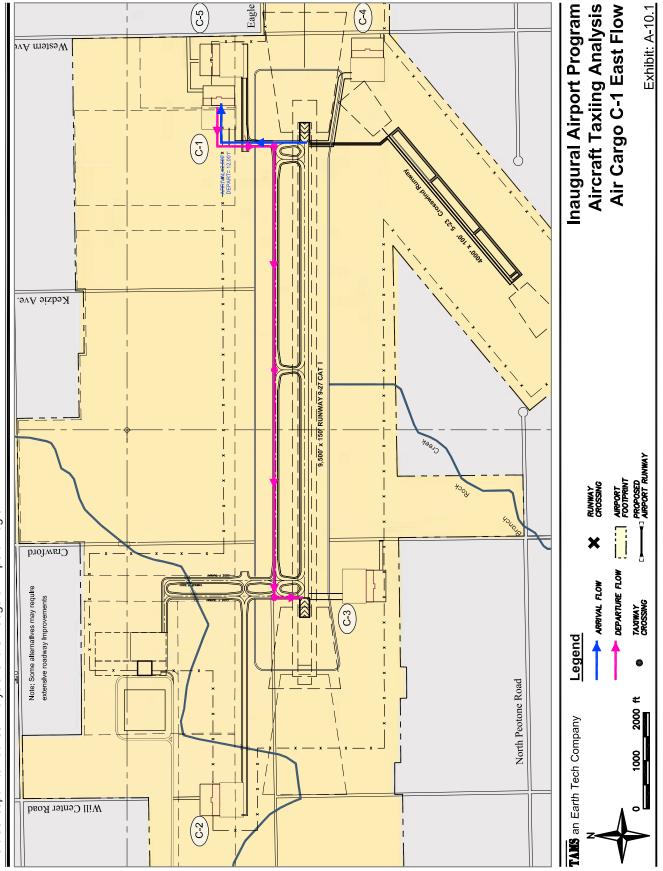
			ural Airport erion 1 – Ta		Facility Cor										
	C	:1	С	2	C	3	C	:4	C5						
	West	Flow	West	Flow	West	Flow	West	Flow	West	Flow					
	Depart (min)	Arrive (min)	Depart (min)	Arrive (min)	Depart (min)	Arrive (min)	Depart (min)	Arrive (min)	Depart (min)	Arrive (min)					
Taxiing Times	1.97	11.09	14.68	4.56	13.15	1.13	2.37	14.41	2.68	11.81					
ruxing rinico	East	Flow	East	Flow	East	Flow	East	Flow	East	Flow					
	Depart (min)	Arrive (min)	Depart (min)	Arrive (min)	Depart (min)	Arrive (min)	Depart (min)	Arrive (min)	Depart (min)	Arrive (min)					
	12.09	1.97	5.56	13.68	1.13	14.15	15.41	2.37	12.81	2.68					
	Total Weighted Taxiing Time														
	13	3.4	19	.2	14	4.6	17	7.1	14.8						
	West	Flow	West	Flow	West	Flow	West	Flow	West Flow						
	Arrive (feet)	Depart (feet)	Arrive (feet)	Depart (feet)	Arrive (feet)	Depart (feet)	Arrive (feet)	Depart (feet)	Arrive (feet)	Depart (feet)					
	2,606	12,001	15,414	6,019	12,083	1,488	3,128	13,739	3,540	12,951					
	Total Taxi Path Length West Flow														
Taxiing Distances	,	607	21,4		- /	571	- ,	867	16,491						
J	East	Flow	East Flow		East	Flow	East	Flow	East	Flow					
	Arrive (feet)	Depart (feet)	Arrive (feet)	Depart (feet)	Arrive (feet)	Depart (feet)	Arrive (feet)	Depart (feet)	Arrive (feet)	Depart (feet)					
	12,.001	2,606	6,019	15,414	1,488	12,083	13,739	3,128	12,951	3,540					
	Total Taxi Pa	ath Length Ea	ast Flow												
	14,	607	21,4	433	13,	571	16,	867	16,491						

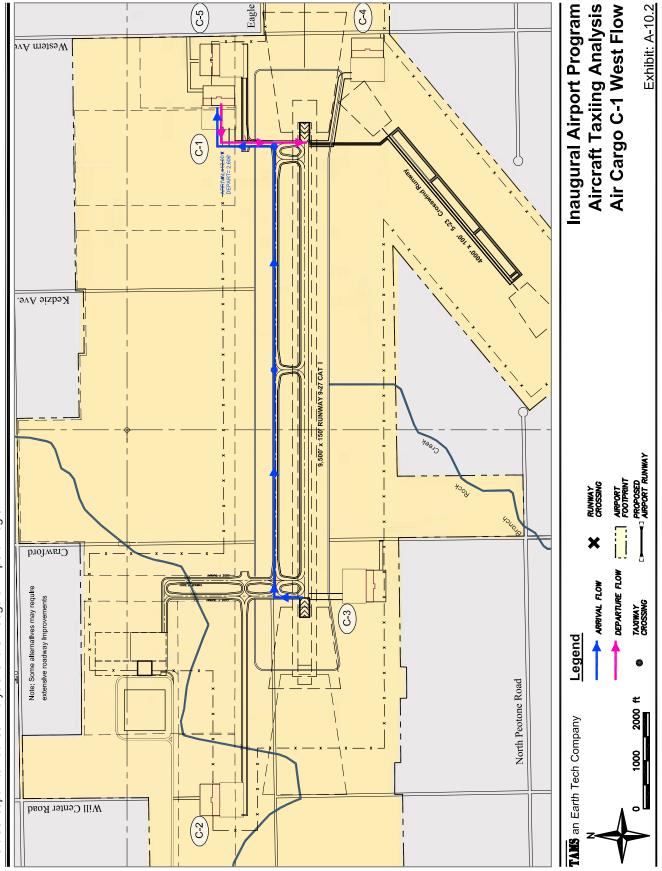
Assumptions:

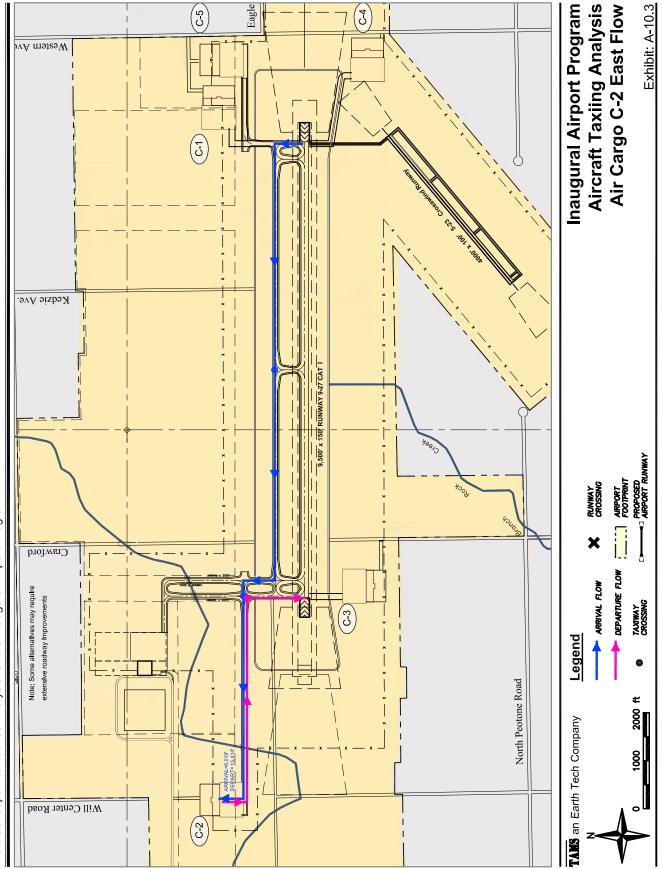
All taxiing paths originate or end at the mid-point of the apron of the cargo building.
Taxi Speed: 15 miles per hour or 1,320 feet per minute.

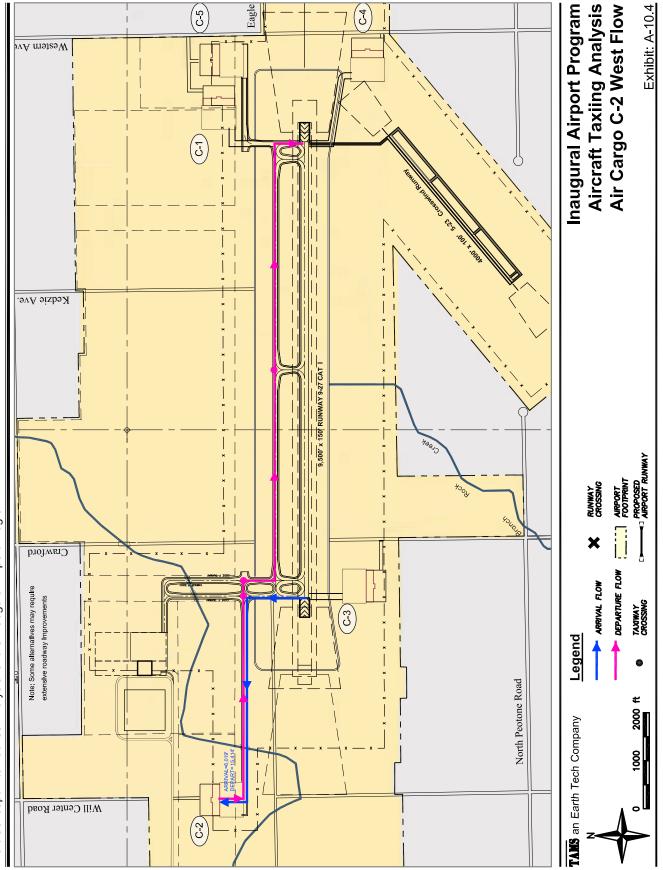
3. Waiting Time: Runway/Taxiway Crossing = 3 minutes; Taxiway/Taxiway Crossing = 1 minute.

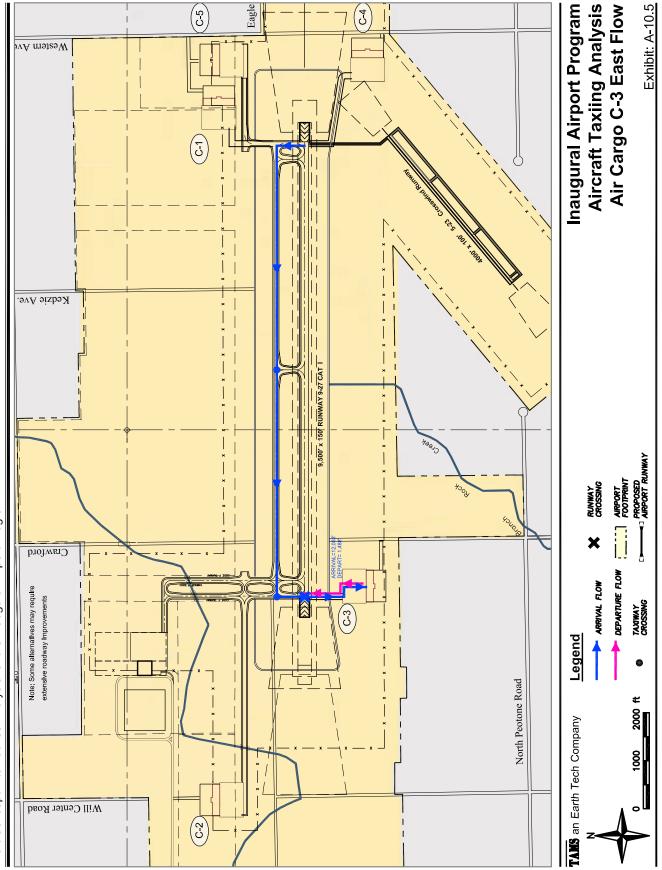
4. West flow configuration assumed to occur 67% of the time; East flow configuration assumed to occur 33% of the time


<u>Calculation Methodology</u>: Departure and arrival times were summed for West and East Flow. Total taxi time was calculated by multiplying West flow total time by .67 and East Flow total time by .33 and adding weighted West total plus weighted East total. Scoring assignments for Criterion 1 are shown on Table A-25.


Table A-27 Inaugural Airport – Air Cargo Facility Concept Alternatives Criterion 2 – Landside Access Distance										
Alternative	West I-57 (miles)									
C-1	6.7									
C-2	2.9									
C-3	5.8									
C-4	7.8									
C-5	6.5									


						lna Crite	ugural Airport erion 6 - Relati	Table – Air Cargo ve Cost Con	Facility Cond	ept Alternat ing Assignr	ives nents							
Alternative	Earth- work <i>(cubic</i> yards)	Score	Constructi on Site Area <i>(acr</i> es)	Score	Access Roadway Improvement Length <i>(miles)</i>	Score	Estimated Cost – Creek Crossings (dollars)	Score	Taxiway length <i>(feet)</i>	Score	Wetlands <i>(acres)</i>	Score	Floodpl ains <i>(acres)</i>	Score	Streams <i>(miles)</i>	Score	Combined Score	Average Score
C-1	382,323	2	34.2	5	5.52	1	1 mill	5	1,245	5	0.71	4	0	5	0	5	35	4.375
C-2	424,888	1	82.1	1	1.25	5	1 mill	5	4.576	1	1.04	3	12.05	1	0.14	1	14	1.75
C-3	260,268	5	31.7	5	4.09	3	4.5 mill	1	814	5	0.51	5	0	5	0	5	32	4
C-4	340,382	3	41.5	4	6.05	1	4.5 mill	1	2,288	3	0.88	4	0	5	0	5	26	3.25
C-5	400,000	1	60.7	3	5.64	1	1 mill	5	2,201	4	1.52	1	0	5	0	5	28	3.5
Max Value	424.888		82.1		6.05		4.5 mill		4,576		8.3		12.05		0.6			
Min Value	260,268		31.7		1.25		1.0 mill		814		0.7		0		0			
Range of Values	164,614		50.4		4.8		3.5 mill		3,762	·	7.6		12.05		0.6			
20% of Range	32,923		10.1		.96		0.7 mill		752.4		1.52		2.41		0.12			
Score	Scoring	Range	Scoring	Range	Scoring F	Range	Scoring	Range	Scoring	Scoring Range		Scoring Range		Scoring Range		Range		
	Low	High	Low	High	Low	High	Low	High	Low	High	Low	High	Low	High	Low	High		
1	391,959	424,882	72.04	82.11	5.09	6.05	3.8 mill	4.5 mill	3,823.6	4,576	1.318	1.52	9.64	12.05	0.112	0.14		
2	359,036	390,313	61.96	71.5	4.13	5.04	3.1 mill	3.8 mill	3,071.2	3,785.098	1.116	1.308	7.23	9.52	0.084	0.111		
3	326,113	357,390	51.88	61.45	3.17	4.08	2.4 mill	3.1 mill	2,318.8	3,033.58	0.914	1.106	4.82	7.11	0.056	0.083		
4	293,191	324,467	41.81	51.38	2.21	3.12	1.7 mill	2.4 mill	1,566.4	2,281.18	0.712	0.904	2.41	2.294.70	0.028	0.055		
5	260,268	291,545	37.71	41.31	1.25	2.16	1.0 mill	1.7 mill	814	1,528.78	0.51	0.701	0.0	2.29	0	0.027		


Source: TAMS, an Earth Tech Company, 2005


Note: 1) Creek Crossings refer to the costs associated with structures required where roadways or other site elements cross creeks. Costs associated with Streams refers to costs related to work on stream bed, embankment and mitigation. 2) Access roadway improvement length is the estimated length of roadway that must be improved to provide access to the air cargo facility. Access distance is an estimate of the average distance of travel from a major highway to the air cargo facility.

